p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.94C24, C42.136C23, C22.154C25, C4.1162- 1+4, D4⋊3Q8⋊46C2, Q8⋊3Q8⋊31C2, C4⋊C4.509C23, (C2×C4).144C24, C4⋊Q8.230C22, (C2×D4).342C23, (C4×D4).258C22, C22⋊C4.64C23, (C4×Q8).245C22, (C2×Q8).319C23, C4⋊D4.125C22, (C2×C42).979C22, (C22×C4).413C23, C22⋊Q8.238C22, C2.57(C2×2- 1+4), C42.C2.89C22, C2.65(C2.C25), C42⋊2C2.11C22, C4.4D4.109C22, C23.37C23⋊58C2, C22.56C24⋊17C2, C22.57C24⋊21C2, C23.36C23⋊62C2, C22.33C24⋊25C2, C22.46C24⋊41C2, C23.41C23⋊27C2, C42⋊C2.253C22, C22.47C24⋊40C2, C22.36C24⋊42C2, C22.35C24⋊26C2, C22.50C24⋊41C2, C22.49C24⋊26C2, C22.D4.22C22, (C2×C4⋊C4).729C22, SmallGroup(128,2297)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.154C25
G = < a,b,c,d,e,f,g | a2=b2=d2=1, c2=b, e2=g2=a, f2=ba=ab, dcd=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 620 in 465 conjugacy classes, 380 normal (122 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C42⋊2C2, C4⋊Q8, C4⋊Q8, C23.36C23, C23.37C23, C22.33C24, C22.35C24, C22.36C24, C22.36C24, C23.41C23, C22.46C24, C22.46C24, C22.47C24, D4⋊3Q8, C22.49C24, C22.50C24, C22.50C24, Q8⋊3Q8, C22.56C24, C22.57C24, C22.154C25
Quotients: C1, C2, C22, C23, C24, 2- 1+4, C25, C2×2- 1+4, C2.C25, C22.154C25
(1 48)(2 45)(3 46)(4 47)(5 19)(6 20)(7 17)(8 18)(9 23)(10 24)(11 21)(12 22)(13 25)(14 26)(15 27)(16 28)(29 49)(30 50)(31 51)(32 52)(33 53)(34 54)(35 55)(36 56)(37 57)(38 58)(39 59)(40 60)(41 61)(42 62)(43 63)(44 64)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 30)(2 51)(3 32)(4 49)(5 35)(6 56)(7 33)(8 54)(9 59)(10 40)(11 57)(12 38)(13 61)(14 42)(15 63)(16 44)(17 53)(18 34)(19 55)(20 36)(21 37)(22 58)(23 39)(24 60)(25 41)(26 62)(27 43)(28 64)(29 47)(31 45)(46 52)(48 50)
(1 22 48 12)(2 21 45 11)(3 24 46 10)(4 23 47 9)(5 25 19 13)(6 28 20 16)(7 27 17 15)(8 26 18 14)(29 57 49 37)(30 60 50 40)(31 59 51 39)(32 58 52 38)(33 41 53 61)(34 44 54 64)(35 43 55 63)(36 42 56 62)
(1 20 46 8)(2 19 47 7)(3 18 48 6)(4 17 45 5)(9 27 21 13)(10 26 22 16)(11 25 23 15)(12 28 24 14)(29 53 51 35)(30 56 52 34)(31 55 49 33)(32 54 50 36)(37 41 59 63)(38 44 60 62)(39 43 57 61)(40 42 58 64)
(1 25 48 13)(2 14 45 26)(3 27 46 15)(4 16 47 28)(5 22 19 12)(6 9 20 23)(7 24 17 10)(8 11 18 21)(29 64 49 44)(30 41 50 61)(31 62 51 42)(32 43 52 63)(33 60 53 40)(34 37 54 57)(35 58 55 38)(36 39 56 59)
G:=sub<Sym(64)| (1,48)(2,45)(3,46)(4,47)(5,19)(6,20)(7,17)(8,18)(9,23)(10,24)(11,21)(12,22)(13,25)(14,26)(15,27)(16,28)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,30)(2,51)(3,32)(4,49)(5,35)(6,56)(7,33)(8,54)(9,59)(10,40)(11,57)(12,38)(13,61)(14,42)(15,63)(16,44)(17,53)(18,34)(19,55)(20,36)(21,37)(22,58)(23,39)(24,60)(25,41)(26,62)(27,43)(28,64)(29,47)(31,45)(46,52)(48,50), (1,22,48,12)(2,21,45,11)(3,24,46,10)(4,23,47,9)(5,25,19,13)(6,28,20,16)(7,27,17,15)(8,26,18,14)(29,57,49,37)(30,60,50,40)(31,59,51,39)(32,58,52,38)(33,41,53,61)(34,44,54,64)(35,43,55,63)(36,42,56,62), (1,20,46,8)(2,19,47,7)(3,18,48,6)(4,17,45,5)(9,27,21,13)(10,26,22,16)(11,25,23,15)(12,28,24,14)(29,53,51,35)(30,56,52,34)(31,55,49,33)(32,54,50,36)(37,41,59,63)(38,44,60,62)(39,43,57,61)(40,42,58,64), (1,25,48,13)(2,14,45,26)(3,27,46,15)(4,16,47,28)(5,22,19,12)(6,9,20,23)(7,24,17,10)(8,11,18,21)(29,64,49,44)(30,41,50,61)(31,62,51,42)(32,43,52,63)(33,60,53,40)(34,37,54,57)(35,58,55,38)(36,39,56,59)>;
G:=Group( (1,48)(2,45)(3,46)(4,47)(5,19)(6,20)(7,17)(8,18)(9,23)(10,24)(11,21)(12,22)(13,25)(14,26)(15,27)(16,28)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,30)(2,51)(3,32)(4,49)(5,35)(6,56)(7,33)(8,54)(9,59)(10,40)(11,57)(12,38)(13,61)(14,42)(15,63)(16,44)(17,53)(18,34)(19,55)(20,36)(21,37)(22,58)(23,39)(24,60)(25,41)(26,62)(27,43)(28,64)(29,47)(31,45)(46,52)(48,50), (1,22,48,12)(2,21,45,11)(3,24,46,10)(4,23,47,9)(5,25,19,13)(6,28,20,16)(7,27,17,15)(8,26,18,14)(29,57,49,37)(30,60,50,40)(31,59,51,39)(32,58,52,38)(33,41,53,61)(34,44,54,64)(35,43,55,63)(36,42,56,62), (1,20,46,8)(2,19,47,7)(3,18,48,6)(4,17,45,5)(9,27,21,13)(10,26,22,16)(11,25,23,15)(12,28,24,14)(29,53,51,35)(30,56,52,34)(31,55,49,33)(32,54,50,36)(37,41,59,63)(38,44,60,62)(39,43,57,61)(40,42,58,64), (1,25,48,13)(2,14,45,26)(3,27,46,15)(4,16,47,28)(5,22,19,12)(6,9,20,23)(7,24,17,10)(8,11,18,21)(29,64,49,44)(30,41,50,61)(31,62,51,42)(32,43,52,63)(33,60,53,40)(34,37,54,57)(35,58,55,38)(36,39,56,59) );
G=PermutationGroup([[(1,48),(2,45),(3,46),(4,47),(5,19),(6,20),(7,17),(8,18),(9,23),(10,24),(11,21),(12,22),(13,25),(14,26),(15,27),(16,28),(29,49),(30,50),(31,51),(32,52),(33,53),(34,54),(35,55),(36,56),(37,57),(38,58),(39,59),(40,60),(41,61),(42,62),(43,63),(44,64)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,30),(2,51),(3,32),(4,49),(5,35),(6,56),(7,33),(8,54),(9,59),(10,40),(11,57),(12,38),(13,61),(14,42),(15,63),(16,44),(17,53),(18,34),(19,55),(20,36),(21,37),(22,58),(23,39),(24,60),(25,41),(26,62),(27,43),(28,64),(29,47),(31,45),(46,52),(48,50)], [(1,22,48,12),(2,21,45,11),(3,24,46,10),(4,23,47,9),(5,25,19,13),(6,28,20,16),(7,27,17,15),(8,26,18,14),(29,57,49,37),(30,60,50,40),(31,59,51,39),(32,58,52,38),(33,41,53,61),(34,44,54,64),(35,43,55,63),(36,42,56,62)], [(1,20,46,8),(2,19,47,7),(3,18,48,6),(4,17,45,5),(9,27,21,13),(10,26,22,16),(11,25,23,15),(12,28,24,14),(29,53,51,35),(30,56,52,34),(31,55,49,33),(32,54,50,36),(37,41,59,63),(38,44,60,62),(39,43,57,61),(40,42,58,64)], [(1,25,48,13),(2,14,45,26),(3,27,46,15),(4,16,47,28),(5,22,19,12),(6,9,20,23),(7,24,17,10),(8,11,18,21),(29,64,49,44),(30,41,50,61),(31,62,51,42),(32,43,52,63),(33,60,53,40),(34,37,54,57),(35,58,55,38),(36,39,56,59)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 4A | ··· | 4F | 4G | ··· | 4AC |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2- 1+4 | C2.C25 |
kernel | C22.154C25 | C23.36C23 | C23.37C23 | C22.33C24 | C22.35C24 | C22.36C24 | C23.41C23 | C22.46C24 | C22.47C24 | D4⋊3Q8 | C22.49C24 | C22.50C24 | Q8⋊3Q8 | C22.56C24 | C22.57C24 | C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 6 | 2 | 4 | 2 | 1 | 1 | 3 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of C22.154C25 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,4,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,3,0,0,0,0,3,0,0,0,0,0,0,0,1,2,0,0],[0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2],[1,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,3,1] >;
C22.154C25 in GAP, Magma, Sage, TeX
C_2^2._{154}C_2^5
% in TeX
G:=Group("C2^2.154C2^5");
// GroupNames label
G:=SmallGroup(128,2297);
// by ID
G=gap.SmallGroup(128,2297);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,1430,723,184,2019,570,360,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=1,c^2=b,e^2=g^2=a,f^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations